ISSN 2581-5954

February 2020, Vol. 3, Issue 2, p. 12-18.​​

Comparative Analysis of Various Spatio-Temporal Data Clustering Techniques in Spatio-Temporal Data Mining
Muhammad Haroon
Department of Computer Science & Information Technology, University of Gujrat Lahore Sub Campus, Lahore, Pakistan.
*Corresponding author’s e-mail:
haroon@uoglahore.edu.pk

Abstract

The data in digital world are increasing exponentially day by day. Spatio-temporal data hold data about an object in space over a period of time. Vast amount of spatiotemporal data is generated on daily basis in different application fields like weather forecasting, traffic flow, geo-tagging in social media etc.  Spatiotemporal data mining (STDM) refers to the process of mining interesting and potentially useful patterns from a large spatiotemporal dataset. Clustering is one of the fundamental and important step in data mining process. The clustering is slightly different from trivial clustering technique in data mining. This paper emphasizes the temporal and spatial dimensions of data along with the techniques of spatiotemporal clustering techniques used and the comparative analysis of spatiotemporal algorithms with respect to methodology and complexity.

Keywords: Spatiotemporal data; Clustering; Data mining; Spatiotemporal data mining; Spatiotemporal clustering.

References

  1. Li S, Dragicevic S, Castro FA, Sester M, Winter S, Coltekin A, Pettit C, Jiang B, Haworth J, Stein A, Cheng T. Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 2016;115:119-33
  2. Brent Hall, Michael G, Leahy. Open Source Approaches ‎in Spatial Data Handling. Springer. Advances in Geographic ‎Information Science 2008; 126–128.‎
  3. ‎Ralf Hartmut Güting, Markus Schneider. Moving ‎Objects Databases. Academic Press 2005.‎
  4. Shekhar S, EvansMR, J. M. Kang and P. Mohan, ‎Wiley. Identifying patterns in spatial information: a survey ‎of methods 2011;193-214.‎
  5. ‎Albert P, McShane L. A generalized estimating ‎equations approach for spatially correlated binary data: ‎Applications to the analysis of neuroimaging data. ‎Biometrics 1995;51:627-38.‎
  6. ‎Scally R. GIS for Environmental Management. ESRI ‎Press 2006.‎
  7. ‎Leipnik MR, Albert DP. GIS in Law Enforcement: ‎Implementation Issues and Case Studies. CRC Press, ‎Sacramento 2002.‎
  8. ‎Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet ‎of Things (IoT): A vision, architectural elements, and future ‎directions. Future Gener Comput Syst 2013;29:1645‎-60.‎
  9. ‎Ahmad A, Dey L. A k-mean clustering algorithm for ‎mixed numeric and categorical data 2007;63:503-27.‎
  10. ‎Tork HF. Spatio-Temporal Clustering Methods ‎Classification. Proceedings of the Doctoral Symposium on Informatics ‎Engineering 2012;1-12.‎
  11. ‎Kisilevieh S, Mansmann F, Nanni M, Rinzivillo S. ‎Spatio-temporal c1ustering. In Data mining and Knowledge ‎Discovery Handbook 2010;855-874.‎
  12. ‎Zhang D, Lee K, Lee I. Hierarchical trajectory ‎clustering for spatio-temporal periodic pattern mining. ‎Expert Systems With Applications 2018; 92:1-11.‎
  13. ‎Hüsch M, Schyska B, Bremen L. ‎CorClustST—Correlation-based clustering of big spatio-‎temporal datasets. Future Generation Computer Systems ‎‎2018. ‎
  14. ‎Kalyani D, Chaturvedi SK. A Survey on Spatio-‎Temporal Data Mining. International Journal of Computer ‎Science and Network 2012;1(4).‎
  15. ‎Martino FD, Pedrycz W, Sessa S. Spatiotemporal ‎extended fuzzy C-means clustering algorithm for hotspots ‎detection and prediction. Fuzzy Sets and Systems 2018;340:109-26.‎
  16. ‎Kalnis P, Mamoulis N, Bakiras S. On Discovering ‎Moving Clusters in Spatio-temporal Data. Advances in ‎Spatial and Temporal Databases 2005;3633:364-81.‎
  17. Lee J, Han J, Whang K-Y. Trajectory clustering: a partition-and-group framework. Proceedings of the ACM SIGMOD international conference on Management of data - SIGMOD 2007.  doi:10.1145/1247480.1247546
  18. Gafiney S, Robertson A, Smyth P, Camargo S, and Ghil ‎M. Probabilistic Clustering of Extratropical Cyclones Using ‎Regression Mixture Models, Technical Report UCI-ICS 06-‎‎02, University of California, Irvine. 2006.‎
  19. ‎Lee JG, Han J, Whang KY. Trajectory ‎clustering: A partition-and-group framework. In Proceedings ‎of the ACM SIGMOD Conference on Management of ‎Data. ACM 2007;593-604.‎
  20. ‎Zheng Y, Zhang L, Xie X, Ma W-Y. Mining interesting ‎locations and travel sequences from GPS trajectories. ‎Proceedings of the 18th international conference on World ‎wide web - WWW 2009.‎
  21. ‎Lee K, Zhang D, Lee I. Hierarchical trajectory ‎clustering for spatio-temporal periodic pattern mining. ‎Expert Systems With Applications 2018:92:1-11.‎
  22. ‎ElKaffas S, Zaghlool E, Saad, A. A Density-Based ‎Clustering of Spatio-Temporal Data. New Contributions in ‎Information Systems and Technologies 2015;41-50.‎
  23. ‎Palma AT, Bogorny V, Kuijpers B, Alvares LO. A ‎clustering based approach for discovering interesting places ‎in trajectories,” in ACMSAC. New York, NY, USA: ACM ‎Press 2008;863-68.‎
  24. ‎Yao X. Research issues in spatio-temporal data mining. ‎A white paper submitted to the University Consortium for ‎Geographic Information Science (UCGIS) workshop on ‎Geospatial Visualization and Knowledge Discovery, ‎Lansdowne, Virginia 2003;18-20.‎‎
  25. Faghmous JH, Kumar V. A big data guide to understanding climate change: The case for theory-guided data science. Big data 2014;2(3):155-63. doi:10.1089/big.2014.0026
LATEST NEWS

International Journal of Modern Computation, Information and Communication Technology