LATEST NEWS

International Journal of Modern Computation, Information and Communication Technology

ISSN 2581-5954

May-June 2019, Vol. 2, Issue 5-6, p. 36-42.​​

Arnold's Digitized Summation Technique and Generalized Notion of the Collatz Conjecture
A. Okoth¹, B. Okelo²*
¹School of Informatics and Innovative Systems, ²School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology,P. O. Box 210-40601, Bondo-Kenya.
*Corresponding author’s e-mail:
bnyaare@yahoo.com

Abstract

Many mathematicians have studied Collatz conjecture and its applications; however, it remains an open problem in the field of number theory and is interesting to study. In the present paper, we give a generalized notion of Collatz conjecture as per the new notion of Arnold's Digitized Summation Technique which involves adding digits of a number until we are left with only one single digit. Moreover, a detailed description of the first twenty positive integers is given.

Keywords: Positive integers; Arnold's digitized summation technique; Digitized number form; Collatz Conjecture; Hailstone sequence.

References

  1. Achieng OE, Odongo D, Okelo NB. On Certain Properties of Identification Topological Subspaces. Int J Mod Comput Info and Commun Technol 2018;3(11): 238-40.
  2. Andrijevic D. On b-open sets. Mat Vesnik 1996;48:59-64.
  3. Brooks F. Indefinite cut sets for real functions, Amer Math Monthly 1971;78: 1007-10.
  4. Change CL.  Fuzzy topological spaces, J Math Anal Appl 1968;24:182-90.
  5. Lagarias, JC. The Ultimate Challange: the 3x+1 problem. American Mathematical Society; 2010.
  6. Maheshwari SN, Prasad R. On ROs-spaces, Portugal Math 1975;34:213-17.
  7. Maji PK, Biswas R, Roy PR. Fuzzy soft sets, J Fuzzy Math 2009;9:589-602.
  8. Ogata H. Operations on Topological Spaces and Associated Topology. Math Japonila 1991;36(1):175-84.
  9. Okelo NB. On characterization of various finite subgroups of Abelian groups. Int J Mod Comput Info and Commun Technol 2018;1(5):93-8.
  10. Okelo NB. Theoretical Analysis of Mixed-effects Models with minimized Measurement Error. Int J Math Soft Comp 2018;8(1):55-67.
  11. Okelo NB. Certain properties of Hilbert space operators, Int J Mod Sci Technol 2018;3(6):126-32.
  12. Okelo NB. Certain Aspects of Normal Classes of Hilbert Space Operators, Int J Mod Sci Technol 2018;3(10):203-7.
  13.  Okelo NB. Characterization of Numbers using Methods of Staircase and Modified Detachment of Coefficients. Int J Mod Comput Info and Commun Technol 2018;1(4):88-92.
  14. Okelo NB. On Characterization of Various Finite Subgroups of Abelian Groups. Int J Mod Comput Info and Commun Technol 2018;1(5):93-98.
  15. Okelo NB. On Normal Intersection Conjugacy Functions in Finite Groups. Int J Mod Comput Info and Commun Technol 2018;1(6):111-15.
  16. Okwany I, Odongo D, and Okelo NB. Characterizations of Finite Semigroups of Multiple Operators. Int J Mod Comput Info and Commun Technol 2018;1(6): 116-20.
  17. Pickover CA.  Wonders of numbers Oxford: Oxford University Press, 2001; 116-8.
  18. Saha S. Local connectedness in fuzzy setting. Simon Stevin 1987;61:3-13. 
  19. Sanjay M. On α-τ-Disconnectedness and α-τ-connectedness in Topological spaces. Acta Scientiarum Technol 2015;37:395-99.
  20. Shabir M, Naz M. On soft topological spaces. Comput Math Appl 2011;61:1786-99.
  21. Vijayabalaji S, Sathiyaseelan N. IntervalValued Product Fuzzy Soft Matrices and its Application in Decision Making. Int J Mod Sci Technol 2016;1(7): 159-63.
  22. Wanjara AO, Okelo NB, Ongati O. On Characterization of Very Rotund Banach Spaces. Int J Mod Comput Info and Commun Technol 2018;1(5): 99-102.
  23. Yonnor JJ, Robertson EF. Lothar Collatz” St. Andrews University School of Mathematics and Statistics, Scotland; 2006.