ISSN 2581-5954

January 2019, Vol. 2, Issue 1, p. 1-4.​​

On Characterization of Midpoint Locally Uniformly Rotund Norms in Fréchet Spaces
A. O. Wanjara, N. B. Okelo*, O. Ongati
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya.
*Corresponding author’s e-mail:


In the present paper, instead of using Hilbert space as the most rotund Banach space, we pick a Fréchet space as a unique Banach space and characterize midpoint locally uniformly rotund Banach spaces.

Keywords: Fréchet space; Midpoint Locally Uniformly Rotund space; Weakly Midpoint Locally Uniformly Rotund space.


  1. ​Bermudez T, Gonzalez M, Pello J. Several open problems in operator theory. Extracta Math 2013;28(2):149-56.
  2. Clarkson JA. Uniformly convex spaces. Trans Amer Math Soc 1936;40:396-414.
  3. Day MM. Some more uniformly convex spaces. Bull Amer Math Soc 1941;47:504-507.
  4. Montesinos V, Torregrosa JR. Rotund and uniformly rotund Banach spaces. Collect Math 1991;42(2):137-46.
  5. Day MM. Strict convexity and smoothness of normed spaces. Trans Amer Math Soc 1955;78:516-28.
  6. Zhang Z, Zhang C. On Very rotund Banach space. Appl Math Mech 2000;21(8):23-37.
  7. Andreas K. Frechet Spaces. Skripten 2016; 8 (2):78-86.
  8. Walls G. Trivial intersection groups. Arch Math 1979;32:1-4.
  9. Williams JS. Prime graph components of finite groups. J Algebra 1981;69:487-513.
  10. Vijayabalaji S, Sathiyaseelan N. Intervalvalued product fuzzy soft matrices and its application in decision making. Int J Mod Sci Technol 2016;1(7):159-63.
  11. Chinnadurai V, Bharathivelan K. Cubic ideals in near subtraction semigroups. Int J Mod Sci Technol 2016;1(6):276-82. 

International Journal of Modern Computation, Information and Communication Technology