ISSN 2581-5954
LATEST NEWS

International Journal of Modern Computation, Information and Communication Technology

June 2018, Vol. 1, Issue 1, pp. 33-44.​​

Detection of Breast Cancer from Digital Mammogram images using Medical Image Processing: A Review     
W. S. Jenif D Souza, S. Jothi, A. Chandrasekar*
Department of Computer Science and Engineering, St. Joseph’s College of Engineering, Chennai - 600119. India.
*Corresponding author’s e-mail:
drchandrucse@gmail.com      

Abstract

Breast cancer is the most common cancer that causes deaths for women worldwide over past the 50 years. Early detection is the most effective way to manage the breast cancer. Currently Digital Mammography technique is used for early detection of breast cancer. The result of mammographic image varies with image quality and knowledge of radiologist. Many papers have documented many advanced techniques of Computer Aided Diagnosis using mammogram for detection of breast cancer. This review provides a summary about various recent trends and developments in the field of Computer Aided Diagnosis of breast cancer detection using digital mammograms. This survey focus on the some CAD techniques that was recently developed for detection of breast cancer including detection of masses, detection of architectural distortion, detection of calcification or microcalcification and bilateral asymmetry detection.

Keywords: Architectural distortion; Bilateral asymmetry; Computer Aided Diagnosis; Digital mammography; Mass screening; Microcalcifications.

References

  1. ​Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
  2. American Cancer Society. Global Cancer Facts and Figures. 2nd edition. Atlanta: American Cancer Society; 2011.
  3. Giger ML. Computer-aided diagnosis in radiology. Acad Radiol. 2002;9:1.
  4. Giger ML, Karssemeijer N. Computer-aided diagnosis in medical imaging. IEEE Trans Med Imaging. 2001;20:1205-08.
  5. Doi K. Computer-aided diagnosis in medical imaging: achievements and challenges Congress on Medical Physics and Biomedical Engineering. 2009:96.
  6. Ng KH, Muttarak M. Advances in mammography have improved early detection of breast cancer. J Hong Kong College Radiol. 2003;6:126-31.
  7. DMIST Q and A. 2005. Available:http://www.cancer.gov/cancertopics/factsheet/.
  8. Yang W. Digital mammography update. Biomed Imag Intervention J. 2006;2:45-52.
  9. NCI Cancer Fact Sheets. 2007. http://www.cancer.gov/cancertopics/factsheet/Detection/ screening-mammograms.
  10. Wang T, Karayiannis N. Detection of microcalci fications in digital mammograms using wavelets. IEEE Trans Med Imag. 1998;17:498-509.
  11. Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology. 1992;184:613-7.
  12. Kerlikowske K, Carney P, Geller B, Mandelson M, Taplin S, Malvin K, Ernster V, Urban N, Cutter N, Rosenberg R, Ballard Barbash R. Performance of screening mammography among women with and without a  first-degree relative with breast cancer. Ann Internal Med. 2000;133:855-63.
  13. Brown J, Bryan S, Warren R. Mammography screening: An incremental cost effectiveness analysis of double versus single reading of mammograms. BMJ. 1996;312:809-12.
  14. Warren R, Duffy S. Comparison of single and double reading of mammograms, and change in effectiveness with experience. Br J Radiol. 1995;68:958-62.
  15. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum J, Acharyya J, Conant E, Fajardo L, Bassett L, D’Orsi C, Jong R, Rebner M. Diagnostic performance of digital versus film mammography for breast cancer screening. New England J Med. 2005;353:1773-83.
  16. Brem RF, Rapelyea JA, Zisman G, Hoffmeister JW, Desimio MP. Evaluation of  breast cancer with a computer-aided detection system by mammographic appearance and histopathology. Cancer. 2005;104:931-5.
  17. Berman CG. Recent advances in breast-specific imaging. Cancer Control. 2007;14:338-49.
  18. Brem RF, Hoffmeister JW, Zisman G, DeSimio MP, Rogers SK. A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size. Amer J Roentgenol. 2005;184:893-6.
  19. D. B. Kopans, Breast Imaging, 3rd ed. Baltimore MD, Editor. Pennsylvania, United States; Williams and Wilkins: 2007.
  20. Nishikawa RM, Giger ML, Doi K, Vyborny CJ, Schmidt RA. Computer-aided detection of clustered microcalci fications on digital mammograms. Med Biol Eng Comput. 1995;33:174-8.
  21. Sampat MP, Markey MK, Bovik AC. Computer-Aided Detection and Diagnosis in Mammography. Al bovik, Editor. Handbook of Image and Video Processing. Elsevier Academic Press: 2005.
  22. Caputo B, Torre EL, Bouattour S, Gigante GE. A new kernel method for microcalcification detection: Spin glass-Markov random fields. Stud Health Technol Inf. 2002;90:30-4.
  23. Casaseca-de-la-Higuera P, Arribas JI, Munoz-Moreno E, Alberola-Lopez C. A comparative study on microcalci fication detection methods with posterior probability estimation based on Gaussian mixture models. Proc 27th Annu Int Conf Eng Med Biol Soc. 2005: p. 49-54.
  24. Strickland RN, Hahn H. Wavelet transforms for detecting microcalcifications in mammograms. IEEE Trans Med Imag. 1996;15:218-9.
  25. Mini MG, Devassia VP, Thomas T. Multiplexed wavelet transform technique for detection of microcalcification in digitized mammograms. J Digit Imag. 2004;17:285-91.
  26. Nakayama R, Uchiyama Y, Yamamoto K, Watanabe R, Namba K. Computer-aided diagnosis scheme using a filter bank for detection of microcalci fication clusters in mammograms. IEEE Trans Biomed Eng. 2006;53:273-83.
  27. Regentova E, Zhang L, Zheng J, Veni G. Microcalcification detection based on wavelet domain hidden Markov tree model: Study for inclusion to computer aided diagnostic prompting system. Med Phys. 2007;34:2206-19.
  28. Jiang J, Yao B, Wason AM. A genetic algorithm design for microcalcification detection and classification in digital mammograms. Comput Med Imag Graph. 2007;31:49-61.
  29. Peng Y, Yao B, Jiang J. Knowledge-discovery incorporated evolutionary search for microcalci fication detection in breast cancer diagnosis. Artif Intell Med. 2006;37:43-53.
  30. Singh S, Kumar V, Verma HK, Singh D. SVM based system for classi fication of microcalci fications in digital mammograms. In Proc 28th Annu Int Conf Eng Med Biol Soc. 2006;1:p. 4747-50.
  31. Wei L, Yang Y, Nishikawa RM, Wernick MN, Edwards A. Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imag. 2005;24:1278-85.
  32. Reston VA. ACR BI-RADS-Mammography, Ultrasound and Magnetic Resonance Imaging. 4th ed. American College of Radiology: 2003.
  33. Rangayyan RM, Ayres FJ, Desautels JEL. A Review of Computer-Aided Diagnosis of Breast Cancer: Toward the Detection of Subtle Signs. Journal of the Franklin Institute. 2007;344(3-4):312-48.
  34. Timp S, Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Med Phys. 2004;31:958-71.
  35. Kegelmeyer WP Jr, Pruneda JM, Bourland PD, Hillis A, Riggs MW, Nipper ML. Computer-aided mammographic screening for speculated lesions. Radiology. 1994;191:331-37.
  36. Liu S, Babbs CF, Delp EJ. Multiresolution detection of spiculated lesions in digital mammograms. IEEE Trans. Image Process. 2001;10:874-84.
  37. Campanini R, Dongiovanni D, Iampieri E, Lanconelli N, Masotti M, Palermo G, Riccardi A, Rof filli M. A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys Med Biol. 2004;49:961-75.
  38. Eltonsy NH, Tourassi GD, Elmaghraby AS. A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imag. 2007;26:880-9.
  39. B. Sahiner, H. P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, “Classi fication of mass and normal breast tissue: A convolution neural network classi fier with spatial domain and texture images. IEEE Trans Med Imag. 1996;15:598-610.
  40. Mudigonda NR, Rangayyan RM, Desautels JEL. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imag. 2000;19:1032-43.
  41. Bellotti R, Carlo FD, Tangaro S, et al., A completely automated CAD system for mass detection in a large mammographic database. Med Phys. 2006;33:3066-75.
  42. Ozekes S, Osman O, Camurcu AY. Mammographic mass detection using a mass template. Korean J Radiol. 2005;6:221-8.
  43. Tourassi GD, Vargas-Voracek R, Catarious DM Jr, Floyd CE Jr. Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Med Phys. 2003;30:2123-30.
  44. Lai SM, Li X, Biscof WF. On techniques for detecting circumscribed masses in mammograms. IEEE Trans Med Imag. 1989;8:377-386.
  45. Moayedi F, Boostani R, Azimifar Z, Katebi S. A support vector based fuzzy neural network approach for mass classi fication in mammography. In Proc. 15th Int. Conf. Digit. Signal Process, 2007;1-4:240-3.
  46. Swatee S, Alan B, Brian H, Joseph J. Mass detection in mammographic ROIs using Watson filters. In Proc SPIE Med Imag. 2006.
  47. Knutzen AM, Gisvold JJ. Likelihood of malignant disease for various categories of mammographically detected, nonpalpable breast lesions. Mayo Clin Proc. 1993;68:454-60.
  48. Yankaskas BC, Schell MJ, Bird RE, Desrochers DA. Reassessment of breast cancers missed during routine screening mammography: A community based study. Amer J Roentgenol. 2001;177:535-41.
  49. Burrell H, Evans A, Wilson A, Pinder S. False-negative breast screening assessment: What lessons we can learn?. Clin Radiol. 2001;56:385-8.
  50. Ayres FJ, Rangayyan RM. Characterization of architectural distortion in mammograms. IEEE Eng Med Biol Mag. 2005; 24:59-67.
  51. Ayres FJ, Rangayyan RM. Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model. Int J Comput Assist Radiol Surg. 2007;1(6):361-9.
  52. Guo Q, Shao J, Ruiz V. Investigation of support vector machine for the detection of architectural distortion in mammographic images. J Phys Conf Series. 2005;15:88-94.
  53. Tourassi GD, Delong DM, Floyd Jr CE. A study on the computerized fractal analysis of architectural distortion in screening mammograms. Phys Med Biol. 2006;51:1299-312.
  54. Matsubara T, Ichikawa T, Hara T, Fujita H, Kasai S, Endo T, Iwase T, “Automated detection methods for architectural distortions around skinline and within mammary gland on mammograms. In Proc 17th Int Congr Exhib Comput Assist Radiol Surg. U.K.; Elsevier: 2003:950-55.
  55. T. Ichikawa, T. Matsubara, T. Hara, H. Fujita, T. Endo, and T. Iwasem, “Automated detection method for architectural distortion areas on mammograms based on morphological processing and surface analysis. In Proc. SPIE Med Imag. 2004: Image Process. Fitzpatrick JM, Sonka M, Eds. San Diego, CA; SPIE: 2004:5374:pp. 920-25.
  56. Homer MJ. Mammographic Interpretation: A Practical Approach. Boston, MA; McGraw-Hill: 1997.
  57. Scutt D, Lancaster GA, Manning JT. Breast asymmetry and predisposition to breast cancer. Breast Cancer Res. 2006;8:R14.
  58. Miller P, Astley S. Detection of breast asymmetry using anatomical features. Proc. SPIE Biomed. Image Process Biomed Vis. Acharya RS, Goldgof CB, Eds. San Jose, CA; Kluwer: 1993;1905:p.433-42.
  59. Miller P, Astley S. Automated detection of breast asymmetry using anatomical features. In State of the Art in Digital Mammographic Image Analysis, Series in Machine Perception and Artificial Intelligence. Bowyer KW, Astley S, Eds. River Edge, NJ: World Scienti fic: 1994. p. 247-61.
  60. Ferrari RJ, Rangayyan RM, Desautels JEL, Fr`ere AF. Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans Med Imag. 2001;20:953-964.
  61. Ferrari RJ, Rangayyan RM, Borges RA, Fr`ere AF. Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modeling. Med Biol Eng Comput. 2004;42:378-87.
  62. Cahoon TC, Sutton MA, Bezdek JC. Breast cancer detection using image processing techniques IEEE International Conference on Fuzzy Systems. 2000;2:973-76.
  63. Mohideen K, Perumal A, Nallaperumal K. Sathik M. Image denoising and enhancement using multi wavelet with hard threshold in digital mammographic images. International Arab Journal of e-Technology. 2011;2(1):49-55.
  64. Kekre HB, Sarode TK, Gharge SM. Tumor Detection in mammography images using vector quantization technique. International Journal of Intelligent Information Technology Application. 2009;2(5):237-42.
  65. Dubey RB, Hanmandlu M. Gupta SK. Level set detected masses in digital mammograms. Indian Journal of Science and Technology. 2010;3(1):9-13.
  66. Rao VNT, Govardhan A. Efficient segmentation and classification of mammogram images with fuzzy filtering. Indian Journal of Science and Technology. 2015;8(15):1-8.
  67. Srivastava S, Sharma N, Singh SK, Srivastava R. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain. Journal of Medical Physics. 2014;39(3):169-83.
  68. Shanmugavadivu P, Sivakumar V. Fractal-based detection of microcalcification clusters in digital mammograms. Proceedings of ICECIT; Anantapur, Andhra Pradesh, India; Elsevier; 2012: p. 58-63.
  69. Shanmugavadivu P, Sivakumar V. Suhanya J. Wavelet transformation-based detection of masses in digital mammograms. International Journal of Research in Engineering and Technology.2014;3(2):131-8.
  70. Wang TC, Karayiannis NB. Detection of microcalcifications in digital mammograms using wavelets.IEEE Transactions on Medical Imaging. 1998;17(4):498-509.
  71. Pereira DC, Ramos RP, Zanchetta do Nascimento M. Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm. Computer Methods and Programs in Biomedicine. 2014;114(1):88-101.
  72. Paulin F, Santhakumaran A. Classification of Breast cancer by comparing Back propagation training algorithms. International Journal on Computer Science and Engineering. 2001;3:327-32.
  73. Usha Rani K. Parallel Approach for Diagnosis of Breast Cancer using Neural Network Technique. International Journal of Computer Applications. 2010;10:1-5.
  74. Yan Zhang, Xiaoping Cheng, Medical image segmentation based on watershed and graph theory, Image and Signal Processing. 2010;3:1419-22.
  75. Kuo YC, Lin WC, Hsu SC, Cheng AC. Mass detection in digital mammograms system based on PSO algorithm.IEEE International Symposium on Computer, Consumer and Control. Taichung, Taiwan; 2014:662-8. doi:10.1109/IS3C.2014.178.
  76. Lorestani AZ, Bidgoli AM, Dezfoli MA.  Improve breast cancer detection in mammography images using neuro-fuzzy (ANFIS). International Journal of Advanced Research in Computer Science. 2013;4(10):157-60.
  77. Tiedeu A, Daul C, Kentsop A, Graebling P, Wolf D.  Texture-based analysis of clustered microcalcifications detected on mammograms. Digital Signal Processing.2012;22(1):124-32.
  78. Dheeba JN, Singh A, Tamil Selvi S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach.  Journal of Biomedical Informatics. 2014;49:45-52.
  79. Jen C-C, Yu S-S. Automatic detection of abnormal mammograms in mammographic images. Expert Systems with Applications. 2015;42(6):3048-55.
  80. Zhang  X,  Homma  N,  Goto  S,  Kawasumi  Y,  IshibashiT, Abe M, Sugita  N,  Yoshizawa M. A hybrid image filtering method for computer-aided detection of microcalcification clusters in mammograms. Journal of Medical Engineering. 2013;2013:Article ID 615254.
  81. Rahmati P, Adler A, Hamarneh G. Mammography segmentation with maximum likelihood active contours. Medical Image Analysis. 2012;16(6):1167-86.
  82. Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications. 2015;42(3):990-1002.
  83. Beura S, Majhi B, Dash R. Mammogram classification using two dimensional discrete wavelet transform and graylevel co-occurrence matrix for detection of breast cancer. Neurocomputing. 2015;154:1-14.
  84. Jenefer MB, Cyrilraj V. An efficient image processing methods for mammogram breast cancer detection. Journal of Theoretical and Applied Information Technology. 2014;69:32-9.
  85. Durai SMA, Kannan A, Narayana SN. Fuzzy classification model assisted by intensity based approach and segmentation for breast cancer detection and diagnosis. International Journal of Advanced Research in Computer Science. 2010;1(3):398-402.
  86.  Sivakumar R, Karnan M. Diagnose breast cancer through mammograms using EABCO algorithm. International Journal of Engineering and Technology. 2012;4:302-7. 
  87. Varela C, Tahoces PG, Méndez AJ, Souto M, Vidal JJ. Computerized Detection of Breast Masses in Digitized Mammograms. Computers in Biology and Medicine. 2007;37:214-6.
  88. Haykin S. Neural Networks: A Comprehensive Foundation. 2nd Edition. New York; Macmillan College Publishing Co.: 1999.
  89. Jenif D Souza WS. Detection of micro-calcification clusters from digital mammogram using medical image processing. International Journal of Advanced Research in Basic Engineering Sciences and Technology. 2018;4(5):1-9.
  90. Sonar P, Bhosle U, Choudhury C. Mammography classification using modified hybrid SVM-KNN. Signal Processing and Communication (ICSPC), International Conference. 28-29 July 2017. Coimbatore, India. IEEE Xplore, IEEE. 2018.